Angle Properties in Triangles

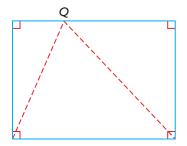
YOU WILL NEED

- dynamic geometry software OR compass, protractor, and ruler
- scissors

EXPLORE...

On a rectangular piece of paper, draw lines from two vertices to a point on the opposite side. Cut along the lines to create two right triangles and an acute triangle.

- What do you notice about the three triangles?
- Can you use angle relationships to show that the sum of the measures of the angles in any acute triangle formed this way is 180°?

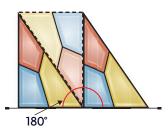


GOAL

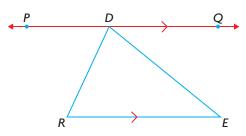
Prove properties of angles in triangles, and use these properties to solve problems.

INVESTIGATE the Math

Diko placed three congruent triangular tiles so that a different angle from each triangle met at the same point. She noticed the angles seemed to form a straight line.



- ? Can you prove that the sum of the measures of the interior angles of any triangle is 180°?
- **A.** Draw an acute triangle, $\triangle RED$. Construct line PQ through vertex D, parallel to RE.



- **B.** Identify pairs of equal angles in your diagram. Explain how you know that the measures of the angles in each pair are equal.
- **C.** What is the sum of the measures of $\angle PDR$, $\angle RDE$, and $\angle QDE$? Explain how you know.
- **D.** Explain why: $\angle DRE + \angle RDE + \angle RED = 180^{\circ}$
- **E.** In part A, does it matter which vertex you drew the parallel line through? Explain, using examples.
- **F.** Repeat parts A to E, first for an obtuse triangle and then for a right triangle. Are your results the same as they were for the acute triangle?

Reflecting

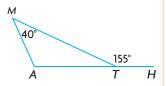
- **G.** Why is Diko's approach not considered to be a proof?
- **H.** Are your results sufficient to prove that the sum of the measures of the angles in any triangle is 180°? Explain.

APPLY the Math

EXAMPLE 1

Using angle sums to determine angle measures

In the diagram, $\angle MTH$ is an **exterior angle** of $\triangle MAT$. Determine the measures of the unknown angles in $\triangle MAT$.



Serge's Solution

$$\angle MTA + \angle MTH = 180^{\circ}$$

 $\angle MTA + (155^{\circ}) = 180^{\circ}$

 $\angle MTA = 25^{\circ}$

∠MTA and ∠MTH are supplementary since they form a straight line.

$$\angle MAT + \angle AMT + \angle MTA = 180^{\circ} - \Delta MAT + (40^{\circ}) + (25^{\circ}) = 180^{\circ}$$

 $\angle MAT = 115^{\circ}$

The sum of the measures of the interior angles of any triangle is 180°.

The measures of the unknown angles are:

$$\angle MTA = 25^{\circ}; \angle MAT = 115^{\circ}.$$

Your Turn

If you are given one interior angle and one exterior angle of a triangle, can you always determine the other interior angles of the triangle? Explain, using diagrams.

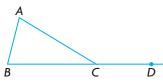
EXAMPLE 2

Using reasoning to determine the relationship between the exterior and interior angles of a triangle

Determine the relationship between an exterior angle of a triangle and its **non-adjacent interior angles** .

non-adjacent interior angles

The two angles of a triangle that do not have the same vertex as an exterior angle.



 $\angle A$ and $\angle B$ are non-adjacent interior angles to exterior $\angle ACD$.

Joanna's Solution

I drew a diagram of a triangle with one exterior angle. I labelled the angle measures a, b, c, and d.

$$\angle d + \angle c = 180^{\circ}$$

 $\angle d = 180^{\circ} - \angle c$

 $\angle d$ and $\angle c$ are supplementary. I rearranged these angles to isolate $\angle d$.

$$\angle a + \angle b + \angle c = 180^{\circ}$$

 $\angle a + \angle b = 180^{\circ} - \angle c$

The sum of the measures of the angles in any triangle is 180°.

$$\angle d = \angle a + \angle b$$

Since $\angle d$ and $(\angle a + \angle b)$ are both equal to $180^{\circ} - \angle c$, by the transitive property, they must be equal to each other.

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.

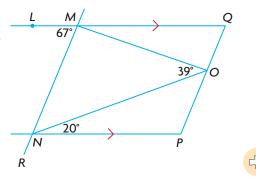
Your Turn

Prove: $\angle e = \angle a + \angle b$

EXAMPLE 3

Using reasoning to solve problems

Determine the measures of $\angle NMO$, $\angle MNO$, and $\angle QMO$.



Tyler's Solution

MN is a transversal of parallel lines LQ and NP. ----- MN intersects parallel lines LQ and NP.

 $\angle MNO + 20^{\circ} = 67^{\circ}$ Since $\angle LMN$ and $\angle MNP$ are alternate interior angles between parallel lines, they are equal.

 $\angle NMO + \angle MNO + 39^\circ = 180^\circ$ The measures of the angles in a triangle add to 180°.

 $\angle NMO + 86^{\circ} = 180^{\circ}$ $\angle NMO = 94^{\circ}$

 $\angle NMO + \angle QMO + 67^\circ = 180^\circ$ $(94^\circ) + \angle QMO + 67^\circ = 180^\circ$ their measures must add to 180°.

The measures of the angles are:

$$\angle MNO = 47^{\circ}; \angle NMO = 94^{\circ}; \angle QMO = 19^{\circ}.$$

 $\angle QMO = 19^{\circ}$

 $161^{\circ} + \angle QMO = 180^{\circ}$

Dominique's Solution

 $\angle NMO + \angle MNO + 39^\circ = 180^\circ$ $\angle NMO + \angle MNO = 141^\circ$ The sum of the measures of the angles in a triangle is 180°.

 $(\angle NMO + \angle QMO) + (\angle MNO + 20^{\circ}) = 180^{\circ}$ $\angle NMO + \angle MNO + \angle QMO = 160^{\circ}$

The angles that are formed by $(\angle NMO + \angle QMO)$ and $(\angle MNO + 20^{\circ})$ are interior angles on the same side of transversal MN. Since $LQ \parallel NP$, these angles are supplementary.

 $(141^{\circ}) + \angle QMO = 160^{\circ}$ $\angle QMO = 19^{\circ}$

I substituted the value of $\angle NMO + \angle MNO$ into the equation.

 $\angle NMO + \angle QMO + 67^{\circ} = 180^{\circ}$ $\angle NMO + (19^{\circ}) + 67^{\circ} = 180^{\circ}$ $\angle NMO = 94^{\circ}$

 \angle LMN, \angle NMO, and \angle QMO form a straight line, so the sum of their measures is 180°.

 $\angle NMO + \angle MNO = 141^{\circ}$ (94°) + $\angle MNO = 141^{\circ}$ $\angle MNO = 47^{\circ}$

The measures of the angles are:

$$\angle QMO = 19^{\circ}; \angle NMO = 94^{\circ}; \angle MNO = 47^{\circ}.$$

Your Turn

In the diagram for Example 3, $QP \parallel MR$. Determine the measures of $\angle MQO$, $\angle MOQ$, $\angle NOP$, $\angle OPN$, and $\angle RNP$.

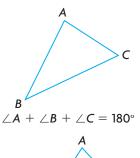
In Summary

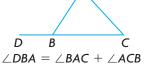
Key Idea

• You can prove properties of angles in triangles using other properties that have already been proven.

Need to Know

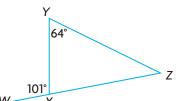
- In any triangle, the sum of the measures of the interior angles is proven to be 180°.
- The measure of any exterior angle of a triangle is proven to be equal to the sum of the measures of the two non-adjacent interior angles.



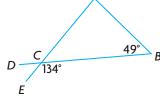


CHECK Your Understanding

- **1.** Harrison drew a triangle and then measured the three interior angles. When he added the measures of these angles, the sum was 180°. Does this prove that the sum of the measures of the angles in any triangle is 180°? Explain.
- **2.** Marcel says that it is possible to draw a triangle with two right angles. Do you agree? Explain why or why not.
- **3.** Determine the following unknown angles.
 - a) $\angle YXZ$, $\angle Z$

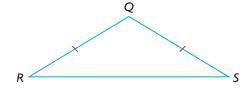


b) $\angle A$, $\angle DCE$

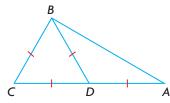


PRACTISING

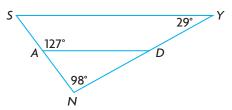
4. If $\angle Q$ is known, write an expression for the measure of one of the other two angles.



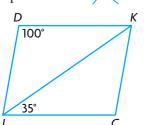
5. Prove: $\angle A = 30^{\circ}$



- **6.** Determine the measures of the exterior angles of an equilateral triangle.
- **7.** Prove: $SY \parallel AD$



- **8.** Each vertex of a triangle has two exterior angles, as shown.
 - **a)** Make a conjecture about the sum of the measures of $\angle a$, $\angle c$, and $\angle e$.
 - **b)** Does your conjecture also apply to the sum of the measures of $\angle b$, $\angle d$, and $\angle f$? Explain.
 - c) Prove or disprove your conjecture.
- **9.** *DUCK* is a parallelogram. Benji determined the measures of the unknown angles in *DUCK*. Paula says he has made an error.

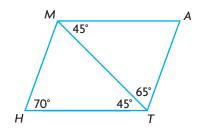


Benji's Solution

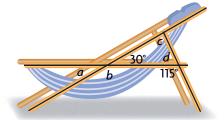
Statement	Justification
$\angle DKU = \angle KUC$	$\angle DKU$ and $\angle KUC$ are alternate interior angles.
$\angle DKU = 35^{\circ}$	
$\angle UDK = \angle DUC$	$\angle UDK$ and $\angle DUC$ are corresponding angles.
$\angle DUK + \angle KUC = 100^{\circ}$	$\angle DUK$ and $\angle UKC$ are alternate interior angles.
$\angle DUK = 65^{\circ}$	
$\angle UKC = 65^{\circ}$	
$\angle UCK = 180^{\circ} - (\angle KUC + \angle UKC)$	The sum of the measures of the angles in a
$\angle UCK = 180^{\circ} - (35^{\circ} + 65^{\circ})$	triangle is 180°.
$\angle UCK = 80^{\circ} \qquad D \qquad K$ $100^{\circ} \qquad 35^{\circ}$ $65^{\circ} \qquad 80^{\circ}$	I redrew the diagram, including the angle measures I determined.

- a) Explain how you know that Benji made an error.
- **b**) Correct Benji's solution.

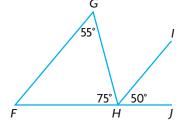
10. Prove that quadrilateral *MATH* is a parallelogram.



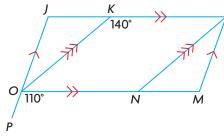
11. A manufacturer is designing a reclining lawn chair, as shown. Determine the measures of $\angle a$, $\angle b$, $\angle c$, and $\angle d$.



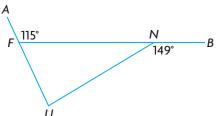
- **12. a)** Tim claims that FG is not parallel to HI because $\angle FGH \neq \angle IHJ$. Do you agree or disagree? Justify your decision.
 - **b)** How else could you justify your decision? Explain.



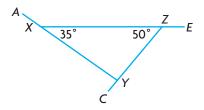
13. Use the given information to determine the measures of ∠*J*, ∠*JKO*, ∠*JOK*, ∠*KLM*, ∠*KLN*, ∠*M*, ∠*LNO*, ∠*LNM*, ∠*MLN*, ∠*NOK*, and ∠*JON*.



14. Determine the measures of the interior angles of $\triangle FUN$.

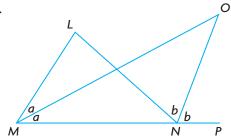


- **15.** a) Determine the measures of $\angle AXZ$, $\angle XYC$, and $\angle EZY$.
 - **b)** Determine the sum of these three exterior angles.



16. *MO* and *NO* are angle bisectors.

Prove: $\angle L = 2 \angle O$



Closing

17. Explain how drawing a line that is parallel to one side of any triangle can help you prove that the sum of the angles in the triangle is 180°.

Extending

18. Given: AE bisects $\angle BAC$.

 $\triangle BCD$ is isosceles.

Prove: $\angle AEB = 45^{\circ}$



19. $\triangle LMN$ is an isosceles triangle in which LM = LN. ML is extended to point D, forming an exterior angle, $\angle DLN$. If $LR \parallel MN$, where N and R are on the same side of MD, prove that $\angle DLR = \angle RLN$.